Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

نویسندگان

  • Shu Wang
  • Jean-Pierre Wigneron
  • Lingmei Jiang
  • Marie Parrens
  • Xiao-Yong Yu
  • Amen Al-Yaari
  • Qinyu Ye
  • Roberto Fernandez-Moran
  • Wei Ji
  • Yann Kerr
چکیده

Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval process. In the first step, we retrieved a parameter (referred to as the ∗ parameter) accounting for the combined effects of roughness and vegetation. Then, global MODIS NDVI OPEN ACCESS Remote Sens. 2015, 7 5735 data were used to decouple the effects of vegetation from those of surface roughness. Finally, global maps of the Hr parameters were produced and discussed. Initial results showed that some spatial patterns in the Hr values could be associated with the main vegetation types (higher values of were retrieved generally in forested regions, intermediate values were obtained over crops and grasslands, and lower values were obtained over shrubs and desert) and topography. For instance, over the USA, lower values of were retrieved in relatively flat regions while relatively higher values were retrieved in hilly regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Microwave Remote Sensing of Retrieving Surface Multi-parameters Using Active and Passive Satellite Data: In the Tibetan Plateau Region of Maqu

To conduct with these land surface parameters inversion using microwave observations in the bare soil surface, it is needed to estimate soil moisture (SM), surface temperature (ST) and surface roughness changes with microwave observations. High-frequency passive microwave radiometer sensitivity of the roughness is very low, traditional ground truth can’t provide an accurate large-scale roughnes...

متن کامل

Retrieval of Soil Moisture Data at Global Scales with Amsr-e

An algorithm for the estimate of the soil moisture content on a global scale from dual-frequency (Cand Xbands) microwave data of the Advanced Microwave Scanning Radiometer (AMSR-E) is presented in this paper. The algorithm is based on the brightness temperature at C-band and uses the Polarization Index at X-band to correct for vegetation effects. The retrieval is obtained by inverting a simplif...

متن کامل

The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

For several years passive microwave observations have been used to retrieve soil moisture from the Earth’s surface. Low frequency observations have the most sensitivity to soil moisture, therefore the current Soil Moisture and Ocean Salinity (SMOS) and future Soil Moisture Active and Passive (SMAP) satellite missions observe the Earth’s surface in the L-band frequency. In the past, several sate...

متن کامل

Sensor Synergy of Active and Passive Microwave Instruments for Observations of Marine Surface Winds

An example of sensor synergy of active and passive microwave instruments for observations of marine surface winds is demonstrated using data from the Advanced Earth Observing Satellite-II (ADEOS-II), which carried a Ku-band microwave scatterometer, SeaWinds, and the Advanced Microwave Scanning Radiometer (AMSR). Scalar wind speed observed by AMSR was evaluated by using wind speed observed by Se...

متن کامل

Evaluation of AMSR-E-Derived Soil Moisture Retrievals Using Ground-Based and PSR Airborne Data during SMEX02

A Land Surface Microwave Emission Model (LSMEM) is used to derive soil moisture estimates over Iowa during the Soil Moisture Experiment 2002 (SMEX02) field campaign, using brightness temperature data from the Advanced Microwave Sounding Radiometer (AMSR)-E satellite. Spatial distributions of the near-surface soil moisture are produced using the LSMEM, with data from the North American Land Data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015